Semi-Automatic Measurement of the Airway Dimension by Computed Tomography Using the Full-Width-Half-Maximum Method: a Study on the Measurement Accuracy according to the CT Parameters and Size of the Airway
نویسندگان
چکیده
OBJECTIVE To assess the influence of variable factors such as the size of the airway and the CT imaging parameters such as the reconstruction kernel, field-of-view (FOV), and slice thickness on the automatic measurement of airway dimension. MATERIALS AND METHODS An airway phantom was fabricated that contained eleven poly-acryl tubes of various lumen diameters and wall thicknesses. The measured density of the poly-acryl wall was 150 HU, and the measured density of the airspace filled with polyurethane foam was -900 HU. CT images were obtained using a 16-MDCT (multidetector CT) scanner and were reconstructed with various reconstruction kernels, thicknesses and FOV. The luminal radius and wall thickness were measured using in-house software based on the full-width-half-maximum method. The measured values as determined by CT and the actual dimensions of the tubes were compared. RESULTS Measurements were most accurate on images reconstructed with use of a standard kernel (mean error: -0.03 +/- 0.21 mm for wall thickness and -0.12 +/- 0.11 mm for the luminal radius). There was no significant difference in accuracy among images with the use of variable slice thicknesses or a variable FOV. Below a 1-mm threshold, the measurement failed to represent the change of the real dimensions. CONCLUSION Measurement accuracy was strongly influenced by the specific reconstruction kernel utilized. For accurate measurement, standardization of the imaging protocol and selection of the appropriate anatomic level are essential.
منابع مشابه
Semi-Automatic Measurement of the Airway Dimension by Computed Tomography Using the Full-With-Half-Maximum Method: a Study of the Measurement Accuracy according to the Orientation of an Artificial Airway
OBJECTIVE To develop an algorithm to measure the dimensions of an airway oriented obliquely on a volumetric CT, as well as assess the effect of the imaging parameters on the correct measurement of the airway dimension. MATERIALS AND METHODS An airway phantom with 11 poly-acryl tubes of various lumen diameters and wall thicknesses was scanned using a 16-MDCT (multidetector CT) at various tilt ...
متن کاملLimitations of Airway Dimension Measurement on Images Obtained Using Multi-Detector Row Computed Tomography
OBJECTIVES (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. METHODS An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned...
متن کاملOptimization of Parameters in 16-slice CT-scan Protocols for Reduction of the Absorbed Dose
Introduction In computed tomography (CT) technology, an optimal radiation dose can be achieved via changing radiation parameters such as mA, pitch factor, rotation time and tube voltage (kVp) for diagnostic images. Materials and Methods In this study, the brain, abdomen, and thorax scaning was performed using Toshiba 16-slice scannerand standard AAPM and CTDI phantoms. AAPM phantom was used for...
متن کاملEffect of Phantom Size and Tube Voltage on the Size-Conversion Factor for Patient Dose Estimation in Computed Tomography Examinations
Introduction: This study aimed to establish the conversion factors to normalize the output dose of volumetric computed tomography dose index (CTDIvol) to the patient dose (i.e. size-specific dose estimate (SSDE)) for various phantom diameters and tube voltages. Material and Methods: In-house cylindrical acrylic phantoms with physical diameter...
متن کاملPharyngeal Airway: An Analysis Using 2D vs. 3D Images in Different Malocclusions
Introdouction: The aim of this study was to compare information regarding pharyngeal airway sizes in adolescent subjects with different malocclusion classes obtained from lateral cephalograms and 3–dimensional (3D) cone-beam computed tomography (CBCT) scans. Materials and methods: In this prospective cross-sectional study, CBCT scans and lateral cephalograms of 35 subjects, taken with...
متن کامل